Opening the black box of neural networks for remote sensing image classification
نویسندگان
چکیده
Neural networks, which make no assumption about data distribution, have achieved improved image classification results compared to traditional methods. Unfortunately, a neural network is generally perceived as being a ‘black box’. It is extremely difficult to document how specific classification decisions are reached. Fuzzy systems, on the other hand, have the capability to represent classification decisions explicitly in the form of fuzzy ‘if-then’ rules. However, the construction of a knowledge base, especially the fine-tuning of the fuzzy set parameters of the fuzzy rules in a fuzzy expert system, is a tedious and subjective process. This research has developed a new, improved neuro-fuzzy image classification system based on the synergism between neural networks and fuzzy expert systems. It incorporates the best of both technologies and compensates for the shortcomings of each. The learning algorithms of neural networks developed here are used to automate the derivation of fuzzy set parameters for the fuzzy ‘if-then’ rules in a fuzzy expert system. The rules obtained, in symbolic form, facilitate the understanding of the neural network based image classification system. In addition, the image classification accuracy obtained from the improved neuro-fuzzy system was significantly superior to those of the back-propagation based neural network and the maximum likelihood approaches.
منابع مشابه
Palarimetric Synthetic Aperture Radar Image Classification using Bag of Visual Words Algorithm
Land cover is defined as the physical material of the surface of the earth, including different vegetation covers, bare soil, water surface, various urban areas, etc. Land cover and its changes are very important and influential on the Earth and life of living organisms, especially human beings. Land cover change monitoring is important for protecting the ecosystem, forests, farmland, open spac...
متن کاملDetermination of Best Supervised Classification Algorithm for Land Use Maps using Satellite Images (Case Study: Baft, Kerman Province, Iran)
According to the fundamental goal of remote sensing technology, the image classification of desired sensors can be introduced as the most important part of satellite image interpretation. There exist various algorithms in relation to the supervised land use classification that the most pertinent one should be determined. Therefore, this study has been conducted to determine the best and most su...
متن کاملUsing remote sensing data and GIS to evaluate air pollution and their relationship with land cover and land use in Baghdad City
The research used the satellite image (Landsat 7 ETM ) within the thermal infrared sixth band (TIR6) and geographic information system (GIS) to determine the air pollution and its relationship with the land cover (LC) and land use (LU) of Baghdad city. Concentration of total suspended particles (TSP), lead (Pb), carbon oxides (CO, CO2), and sulphur dioxide (SO2) were obtained from 22 ground mea...
متن کاملApplication of remote sensing and geographical information system in mapping land cover of the national park
The study was conducted with the objective of mapping landscape cover of Nechsar National park in Ethiopia to produce spatially accurate and timely information on land use and changing pattern. Monitoring provides the planners and decision-makers with required information about the current state of its development and the nature of changes that have occurred. Remote sensing and Geographical Inf...
متن کاملAdaptive Neuro-Fuzzy Inference System application for hydrothermal alteration mapping using ASTER data
The main problem associated with the traditional approach to image classification for the mapping of hydrothermal alteration is that materials not associated with hydrothermal alteration may be erroneously classified as hydrothermally altered due to the similar spectral properties of altered and unaltered minerals. The major objective of this paper is to investigate the potential of a neuro-fuz...
متن کامل